
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by:
On: 23 January 2011
Access details: Access Details: Free Access
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

International Journal of Polymeric Materials
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713647664

Parison Inflation in Extrusion Blow Molding: A Theoretical Analysis for
Identifying Critical Process Parameters
A. Duttaab; M. E. Ryana

a Chemical Engineering Department, State University of New York at Buffalo, Amherst, New York,
U.S.A. b Chemical Engineering Division, National Chemical Laboratory, Pune, India

To cite this Article Dutta, A. and Ryan, M. E.(1982) 'Parison Inflation in Extrusion Blow Molding: A Theoretical Analysis
for Identifying Critical Process Parameters', International Journal of Polymeric Materials, 9: 3, 201 — 215
To link to this Article: DOI: 10.1080/00914038208077980
URL: http://dx.doi.org/10.1080/00914038208077980

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713647664
http://dx.doi.org/10.1080/00914038208077980
http://www.informaworld.com/terms-and-conditions-of-access.pdf


Intern. J .  Polymeric Mater., 1982, Vol. 9, pp. 201-215 
00914037/82/09034201 %06.50/0 
0 1982 Gordon and Breach Science Publishers, Inc. 
Printed in Great Britain 

Parison Inflation in Extrusion Blow 
Molding: A Theoretical Analysis for 
I dent ifyi ng Crit ica I Process 
Parameters 
A. DUlTAt and M. E. RYAN 
Chemical Engineering Department, State University of New York at Buffalo. Amherst, 
New York 14260, U.S.A. 
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An analysis for describing parison (cylindrical) inflation behavior in the extrusion blow molding 
process is presented. A general growth equation is developed starting from the basic conservation 
principles. Assuming the polymer melt constituting the parison to behave as a purely viscous 
Generalized Newtonian Fluid, the effect of different process and material parameters on the 
inflation process is investigated. From the numerical results, it is inferred that the growth behavior 
for inelastic liquid exhibits a general tendency of approaching exponential (constant stretch rate) 
growth as elapsed time progresses. Besides, the initial parison dimensions are determined to play a 
very significant role in governing the inflation process. Moreover, the inertial contribution owing 
to fluid motion is found to exert an appreciable influence on the growth dynamics, and hence 
cannot be neglected without introducing severe approximations in the analytical development. 

I NTRO D U CTlO N 

Extrusion blow molding is one of the most commonly used polymer forming 
operations for production of hollow containers. The continued popularity and 
importance of this process is evident from the enormous growth and 
diversification of the plastics container industry in recent years. In spite of its 
considerable growth, however, there is a remarkable paucity of fundamental 
understanding pertaining to the operation of the entire b b w  molding cycle. 
Generally, the blow molded product is subjected to severe constraints with 
regard to its weight and wall thickness distribution. One of the major factors 
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202 A. DUTTA A N D  M. E. RYAN 

governing the thickness variation (of the product) is the thickness profile of the 
extruded parison. Consequently, a significant portion of the research efforts 
associated with the analysis of the extrusion blow molding process has focused 
primarily on the various aspects of parison formation, such as optimum die 
design,'-3 relationships between the material properties, operating con- 
ditions, and parison quality,"" and techniques for characterizing parison 
swell and draw down behavi~r."-'~ In addition to the parison quality, 
however, the behavior of the parison during subsequent stages of inflation and 
cooling is also of significant importance for efficient operation of the entire 
process. Therefore, it follows, that a detailed knowledge regarding all the 
various stages involved in a blow molding cycle is essential to provide a 
reliable scientific basis for optimizing process conditions and controlling 
product quality. 

The present investigation deals with the inflation dynamics of a cylindrical 
parison. Currently, very little information is available regarding the particular 
nature in which the parison inflates. Denson' has briefly discussed the 
problem of parison inflation in his review of extensional flows in polymer 
processing. He employed a simple analysis for a power-law liquid in order to 
illustrate the application of "phenomenological equations of state" for the 
analysis of practical situations involving extensional flows. A similar approach 
has also been suggested by Middleman" in his treatise on polymer processing. 
In both cases, the inertial contributions were neglected. However, parison 
inflation is a very rapid process, and it is quite likely that the inertia of the fluid 
will have a significant influence on the growth dynamics. This aspect, indeed, is 
more clearly demonstrated in the course of the subsequent discussion. 

In the following sections, a theoretical analysis is developed in order to 
provide some insight into the complex problem of parison inflation by 
considering the analogous situation of the radial growth of a thin cylindrical 
shell due to constant internal pressure. Clearly, this idealized situation implies 
that the end effects are considered negligible. This, however, is deemed to be an 
appropriate assumption considering the large length to diameter ratio of the 
parisons commonly encountered in industrial practice. 

ANALYSIS 

We consider a cylindrical parison of constant length, shown schematically 
in Figure 1, being subjected to a constant applied pressure difference, 
Ap = p i -pa ,  where p i  and pa are the pressures inside and outside the parison 
respectively. It is assumed that the melt constituting the parison is incom- 
pressible and that the process occurs under isothermal conditions. In addition, 
the growth of the parison due to the imposed pressure difference is taken to 
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FIGURE 1 Coordinate system used for inflation analysis. 

occur axisymmetrically. Consequently, our primary objective is to determine 
the radius, R,  as it increases with time, t, and also the dependence of this 
growth behavior on different material properties and process conditions. 

1. General growth equation 

Since the parison is assumed to inflate only radially, the only velocity 
component present is the radial velocity, u, = ur(r, t). Thus, the equation of 
continuity and the r-component of the equation of motion can be simply 
written as 

a 
ar 
-(ru,) = 0 

and 
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204 A. DUTTA A N D  M. E. RYAN 

where p is the density, p the pressure, z,, and zoo are the extra stresses in radial 
and circumferential directions respectively. Since u,(R, t )  = dR/dt  = fi, inte- 
gration of Eq. (1) gives the radial velocity as 

u, = R R / r  (3) 
The rate of deformation tensor, A, can therefore be expressed as 

- 2  0 0 

0 0 0  
A = i (  0 2 0 )  (4) 

where d = R d / r 2  is the extension rate. The second scalar invariant of A is then 
given by 

11, = A : A = 8d2 ( 5 )  

The form of the rate of deformation tensor implies that the flow is planar 
extensional in nature. This existence of planar extensional behavior for 
parison (cylindrical) inflation in a blow molding process has been indicated by 
Denson.I6 

The initial and boundary conditions for this flow situation can be 
represented as follows : 

- ( - p + z , , ) l r = R + a / R  = p i  at r = R ,  t > 0 (64  

-(-p+z,,)lr=s-a/S = pa at r = S, t > 0 (6b) 

R = S = o  for t < O  (64 

R = R,, S = So for t G O  ( 6 4  

where a is the surface tension of the liquid, S is the external radius of the 
parison, and the subscript 0 indicates initial values, that is, at  t = 0. The 
boundary conditions given by Eqs. (6a) and (6b) are obtained from force 
balances at the internal and external surfaces of the parison assuming that the 
stresses developed in the gas phase can be considered to be negligible owing to 
their relatively small magnitude. 

Substituting for the radial velocity, u,, into Eq. (2) and integrating the 
resulting expression over the entire parison thickness ( r  = R to r = S) yields 

p[(RR+R2)ln SIR - "( 2 1 - $)] 

where fi = d2R/dt2 .  Normally the parison thickness, 6, is much smaller than 
the radius of the parison, that is 6 / R  << 1. Therefore, the following expressions 
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INFLATION IN EXTRUSION BLOW MOLDING 205 

involving the ratio SIR can be approximated as 

= (1 +SIR)'" x 1 + (md/R) (84  

In (SIR)"' x mdlR (8b) 

and 

where m is an integer. Making use of these approximations, Eq. (7) can be 
expressed as 

fJ 
Ap - -(2-6/R)-pR.6 = - 

R (9) 

Eq. (9) is a general expression describing inflation of a cylindrical parison 
under a constant applied pressure difference Ap, and is applicable for both 
purely viscous and viscoelastic liquids. Presently, however, we will restrict 
ourselves only to the inelastic case. 

II. Inelastic liquids 

Starting with Stokes' hypothesis and making use of the Cayley-Hamilton 
theorem, the relationship between the extra stress tensor, z, and the rate of 
deformation tensor, A, for an inelastic liquid may be expressed as 

z = ?A+gA2 (10) 

The material functions r]  and g are functions of the three scalar invariants (I,, 
II,, 111,) of the rate of deformation tensor, A. However, incompressibility 
implies that I, = 0 and Eq. (4) gives 111, = 0. The scalar functions, r]  and g, 
therefore depend only on the second scalar invariant, 11,. Also, I, = 0 implies 
that 

rrr--ee = 2rrr (1 1) 

and Eq. (9) reduces to 

where 

fJ 4 = Ap - -(2-6/R)-Rpd 
R 

If the stress tensor is assumed to be a linear function of the rate of deformation 
tensor, g = 0 (Generalized Newtonian Fluid) and Eq. (12) reduces to 
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206 A. DUTTA A N D  M. E. RYAN 

Alternatively, Eq. (14) can be written as 

where I], and vR denote the function v(IIa) evaluated at r = R and r = S 
respectively. Equation (15) can be used to determine the growth behavior of an 
inelastic liquid for which the scalar function, q(IIA) is known. 

Two particular purely viscous rheological equations of state are now 
considered. 

Power-law (Ostwald-de Waele) model : q = KI$A : A#"- l)'' (16) 
Bingham plastic model : 

I] = (p  + r,l$(A : A)l- ' I 2 )  for $(T : T) > 7,' 

A = 0 for $(T:Z) < rf (17) 
where K is the power-law constant, n the power-law index, p the viscosity, and 
r,  is the yield stress. Combining the viscosity function, I], with Eq. ( 1 5 )  and 
using the thin shell approximation given by Eq. (8), the growth equation for the 
power-law and the Bingham plastic models are expressed as follows : 

Power-law : 4 = 4K(2)"- 

where = S o - R ,  and C = RoSo = R6 is a constant dictated by material 
conservation. 

It is convenient to reduce the number of independent parameters by 
nondimensionalizing the variables of interest. For that purpose, we define a 
characteristic process time y = Ro(p/A,)"2. The time and spatial coordinate 
are then nondimensionalized as 6 = t / y  and $ = R/Ro respectively. The 
dimensionless form of Eqs. (1 8 )  and (19) become 

and 
4 2r* 

for z*C* c 1 (21) 
+---+----- 2 1 

C* C* We We$' Re$' y5 

where 
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INFLATION IN EXTRUSION BLOW MOLDING 

f3 = Ap/K, Z* = T,,/Ap, C* = &/R0 

and I/, $are the first and second derivatives of 1+5 with respect to 8. In order to 
obtain the growth profile for a particular liquid model, the appropriate growth 
equation is solved for $(O) subject to the initial conditions $(O) = 1 
and $(O) = 0. 

The nonlinear form of Eqs. (20) and (2 1) precludes any reasonable possibility 
of an analytical solution except for some limiting cases. These growth 
equations, representing an initial value problem were therefore solved 
numerically by employing the fourth-order Milne predictor-corrector tech- 
nique with an improvement of the predictor value using the local truncation 
error for faster convergence.'* Details of the numerical procedure and the 
computer program has been provided elsewhere." 

207 

RESULTS AND DISCUSSION 

Growth profiles for both the power-law and Bingham plastic models were 
obtained for different conditions in order to investigate the influence of the 
various process and material parameters governing the inflation behavior. For 
most polymer melts the Weber number, We, is typically large in magnitude 
(- 104-106). Consequently, from the growth equations it can be expected that 
the contribution owing to the surface tension of the liquid will be much smaller 
as compared to these due to inertial and viscous effects. This behavior was 
indeed corroborated by the numerical results even for We having an assigned 
value as low as lo3. Thus, for all practical purposes, the effect of surface tension 
on the growth process can be assumed to be negligible and will be taken to be 
so during the course of the following discussion. 

Figures 2 and 3 illustrate the growth behavior of a power-law liquid for 
varying degrees of pseudoplasticity (power-law index, n). Increase in pseudo- 
plasticity gives rise to a faster growth of the parison. A more interesting aspect, 
probably, is that after a sufficient period of time has elapsed, the process 
assumes an almost exponential growth. The time required to achieve this 
limiting behaviour reduces as n decreases. Under these conditions the 
magnitude of the growth rate to the radius ratio, $/$, may be expressed as 
follows 

Clearly as 8 increases, $/$ tends to the limiting value of C*- ' I2  as evident in 
Figure 3. Also, note that = yd,, where iR is the extension rate at r = R. 
Therefore, it seems that as the parison inflates, the resulting planar extensional 
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I I I I 

- n  p = 5 sec , W e  = 

'I = o I sec , c*= 

I 

D I M E N S I O N L E S S  T I M E ,  9 

FIGURE 2 Effect of power-law index on parison growth behavior. 

I I I I 

1 I I I 
0.2 0 .4  0 6  0 8  

OIMENSIONLESS T I M E ,  9 
0 

FIGURE 3 Time dependence of the growth rate to radius ratio for different power-law indices. 
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INFLATION IN EXTRUSION BLOW MOLDING 209 

flow situation tends to achieve a motion with a constant stretch rate, at least at 
the internal surface of the parison. Theoretically, of course, this limiting 
condition will be attained only at infinite 8. However, if we hypothesize that 
the time required to reach exponential growth, 8,, occurs at the time when $/I) 
- - XC*-lI2, then 8, can be estimated as 

where X is an arbitrary value chosen to be very close to (but less than) unity. 
The influence of material properties and process conditions on 8, are 
summarized in Table I. 

p and y are two important parameters for parison inflation and their effects 
on the growth profiles are presented in Tables I1 and 111 respectively. Results 
in Table I1 indicate that faster inflation is achieved by increasing p ;  but this 
enhancement in parison growth diminishes very rapidly as the magnitude of p 
itself increases. Besides, the conditions specified in Table I1 imply that A,, 
remains unchanged. Consequently, any effect owing to an increase in /3 can 
directly be attributed to a decrease in the power-law constant, K.  On the other 
hand, results in Table I11 suggest that larger characteristic process time, y, 
facilitates parison inflation. Here again, the conditions imply that changes in y 
can only be possible if the liquid density, p, or the initial radius, R,, changes. 
Therefore, assuming the density to be constant, it can be inferred that the 
curvature of the cylindrical parison is an inhibiting factor towards inflation. 
Alternatively, the larger the initial radius, R,, the more readily will the parison 
inflate. 

The importance of the geometric factor, C*, in governing the growth 
dynamics was previously indicated. This interesting feature is now more 
clearly demonstrated in Figure 4. It is seen that an increase in C* (6, to be more 

TABLE I 
Time required to achieve exponential growth for power-law liquids 

8, 

y = 0.1 sec, X2 = 0.9999 C* = 1/16, X = 0.99 

/3 = 3 sec-" /3 = 5 sec-" /3 = 5 sec-' 
n C* = 1/16 C* = 1/16 C* = 1/9 y = 0.1 sec y = 0.2 sec 

0.0 0.754 0.690 1.016 0.115 0.115 
0.2 0.864 0.800 1.153 0.225 0.208 
0.4 0.973 0.909 1.289 0.335 0.300 
0.6 1.083 1.019 1.426 0.445 0.393 
0.8 1.192 1.128 1.562 0.555 0.485 
1 .o 1.302 1.238 1.699 0.665 0.578 
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210 A. DUTTA AND M. E. RYAN 

TABLE I1 

Effect of /3 on parison growth behavior 

We = lo', y = 0.1 sec, C* = 1/16, n = 0.6 

B 0.5 2.0 5.0 10.0 

% *  *I* * *I+ * *I+ * */* 
sec-" 

0.0 1.Ooo 0.Ooo 1.Ooo 
0.1 1.032 0.464 1.065 
0.2 1.088 0.578 1.243 
0.3 1.159 0.684 1.551 
0.4 1.249 0.824 2.042 
0.5 1.368 1.001 2.808 
0.6 1.530 1.244 3.983 
0.7 1.758 1.547 5.771 
0.8 2.090 1.930 8.470 
0.9 2.589 2.355 12.53 
1.0 3.349 2.796 18.60 

O.Oo0 
1.147 
1.907 
2.503 
2.987 
3.358 
3.6 18 
3.784 
3.883 
3.938 
3.968 

1 .Ooo 
1.074 
1.296 
1.698 
2.348 
3.356 
4.892 
7.210 

10.69 
15.90 
23.68 

0.Ooo 
1.361 
2.343 
3.009 
3.434 
3.689 
3.835 
3.9 15 
3.957 
3.978 
3.989 

1 .Ooo 
1.078 
1.316 
1.753 
2.460 
3.555 
5.219 
7.724 

11.48 
17.09 
25.47 

0.000 
1.439 
2.498 
3.174 
3.565 
3.778 
3.889 
3.945 
3.973 
3.987 
3.994 

precise) results in a retarded growth. As a result, even though the growth rate 
to the radius ratio asymptotically approaches a magnitude of C*-l/' for all 
values of C*, this asymptotic limit is attained more rapidly as the initial 
parison thickness, do, is decreased. Hence, it appears that the initial parison 
dimensions, do and Ro, are two of the most critical process parameters 
controlling inflation behavior and play a central role in determining the 
requisite blowing time for the process. 

A Bingham plastic liquid is considered next in order to ascertain the 

TABLE I11 
Dependence of parison inflation behavior on the characteristic process time, y 

We = lo5, /3 = 3 sec-", C* = 1/16, n = 0.8 

Y 0.05 0.075 0.10 0.20 

e *  *I* + *I* + *I* * *I* 
sec 

0.0 1.Ooo o.Oo0 1.Ooo 0.Ooo 1.Ooo o.oO0 1.OOo 0.Ooo 
0.1 1.053 0.873 1.060 1.014 1.063 1.101 1.070 1.262 
0.2 1.173 1.256 1.207 1.550 1.228 1.737 1.269 2.090 
0.3 1.352 1.586 1.441 1.991 1.499 2.241 1.614 2.690 
0.4 1.613 1.947 1.797 2.424 1.919 2.696 2.162 3.142 
0.5 1.999 2.351 2.339 2.845 2.566 3.098 3.013 3.470 
0.6 2.582 2.764 3.168 3.214 3.557 3.419 4.313 3.690 
0.7 3.470 3.144 4.436 3.504 5.069 3.650 6.284 3.827 
0.8 4.829 3.499 6.366 3.706 7.361 3.800 9.255 3.907 
0.9 6.898 3.669 9.286 3.834 10.82 3.891 13.71 3.951 
1.0 10.03 3.811 13.68 3.910 16.01 3.942 20.38 3.975 
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I I I I 

-n - 3 5ec , We = 1 0 ~  

0 4  0 .6  

DIMENSIONLESS T I M E ,  e 
FIGURE 4 Effect of the geometric parameter, C*, on parison inflation. 

generality of the inflation characteristics exhibited by the purely viscous liquid. 
The inflation behavior of a Bingham plastic liquid for different yield stresses, 
z*, is shown in Figures 5 and 6. Clearly, an increase in z* retards parison 
growth. Also, the growth dynamics of the Bingham plastic is very similar to 
that exhibited by the power-law liquid, with $/$ asymptotically approaching 
C*-ll2 as time progresses. Furthermore, a special case of both the power-law 
(n = 1) and the Bingham plastic (z,, = 0) is the Newtonian liquid. Thus, for 
Newtonian liquid the growth Eqs. (20) and (21) reduce to 

$=--- * *  2 +--- 1 4* 
C* C* We We$’ Re$2 

For the limiting case where surface tension effects may be neglected and the 
Reynolds number becomes very large (Re -+ a), Eq. (24) gives 

$ = cosh(8C*-”2) (25) 

&/$ = C* - tanh(K* - (26) 

and 

Eq. (26) predicts that as 8 -+ co, $/$ -+ C*-1/2, similar to the predicted results 
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212 A. DUTTA AND M. E. RYAN 

D I M E N S I O N L E S S  T I M E ,  e 
FIGURE 5 Growth profiles for Bingham plastic liquids with different yield stresses 

I 

We =lo’ ,  R e - i  

C*= 1 / I 6  

DIMENSIONLESS T I M E ,  e 
FIGURE 6 Effect of yield stress on the growth rate to radius ratio for a Bingham plastic. 
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INFLATION IN EXTRUSION BLOW MOLDING 213 

for the non-Newtonian liquids considered previously. As illustrated in Figure 
7, for a Newtonian liquid, the parison inflates more rapidly with an increase in 
Reynolds number, Re. In addition, it can be seen that for Re > 10, the growth 
behavior is not significantly different for that predicted by Eq. (25) for Re = co. 
Thus, as might be expected, an increase in the inflation pressure or a decrease 
in the viscosity of the melt will result in faster growth of the parison. 

The significance of the inertial contribution to the inflation process is now 
discussed. The importance of fluid inertia can be adequately demonstrated by 
considering the growth of a power-law liquid as described by Eq. (20). If, as a 
simplification, we drop the inertial terms in Eq. (20), it reduces to the following 
simple form 

*/* = (27) 
where tl = y/2(B/2C*)"" and, of course, surface tension of the liquid is 
neglected. Integration of Eq. (27) gives the resulting expression for the parison 
radius 

* = (AT2 
Unlike the growth behavior discussed previously, Eq. (28) predicts that as 

3 

D I M E N S I O N L E S S  T I M E ,  e 
FlGURE 7 Influence of Reynolds number on the growth. behavior of a Newtonian liquid. 
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13 

1c 

3 

0 

FIGURE 8 
without (- - - -) inertial contribution. 

Comparison of inflation behavior of a Newtonian liquid with (- ) and 

8 -, n/2a, $ + 00. Hence, instead of approaching an asymptotic limit, the 
growth rate to radius ratio now tends to become infinite at a critical time 
determined by the process conditions and material properties. Also, Eq. (27) 
suggests the occurrence of a non-zero initial rate of magnitude a. This implies a 
sudden jump in the growth rate at the onset of inflation process and does not 
appear to be realistic. Figure 8 provides a comparison between the growth 
profiles with and without the inclusion of the inertial terms for the case of a 
Newtonian fluid (n = 1, a = Re/4C*). Significant differences in the growth 
characteristics are clearly evident. In the absence of inertial effects, inflation 
proceeds at a much greater rate and the entire process becomes unbounded 
within a short time interval. 

CONCLUSION 

In the preceding sections, an analysis of parison inflation (in extrusion blow 
molding) for inelastic polymer melts has been presented. The primary 
objective of the theoretical development is to illuminate some of the effects 
produced by changes in material properties and process conditions on the 
growth dynamics and to identify the critical parameters controlling the 
inflation behavior. For the inelastic liquids (Newtonian and non-Newtonian) 
considered in the present study, it is determined that they exhibit a general 
growth behavior of approaching exponential growth as elapsed time pro- 
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INFLATION IN EXTRUSION BLOW MOLDING 215 

gresses. This limiting behavior can alternatively be interpreted as the constant 
rate planar extension of the internal surface of the parison. Interestingly, the 
magnitude of this exponential growth rate, $/I), is found to be dependent only 
on the geometric factor C* which, in turn, is related to the initial parison 
dimensions. Therefore, in conclusion, the initial parison dimensions appear to 
play a very significant role in governing the dynamics of parison inflation. 

Additionally, apart from the negligible influence of the surface tension of the 
melt in determining the inflation process, the analysis suggests that faster 
inflation, commonly desired for industrial blow molding operation, can be 
achieved by (i) decreasing the melt viscosity (ii) decreasing the yield stress if the 
melt is Bingham plastic, and (iii) by increasing the inflation pressure. Finally, 
for rapidly occurring processes, such as parison inflation, the inertial 
contribution due to fluid motion is most likely to be appreciable and cannot be 
neglected without introducing severe approximations into the subsequent 
analysis. 
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